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We study nonlinear resonance in viscous gravity-driven films flowing over undulated substrates. Numer-
ical solution of the full, steady Navier–Stokes equations is used to follow the emergence of the first few
free-surface harmonics with increasing wall amplitude, and to study their parametric dependence on film
thickness, inertia and capillarity. Bistable resonance is computed for steep enough bottom undulations.
As an analytic approach, we apply the integral boundary-layer method and derive an asymptotic
equation valid for rather thin films. The analysis recovers the key numerical findings and provides
qualitative understanding. It shows that higher harmonics are generated by a nonlinear coupling of
the wall with lower-order harmonics of the free surface. It also accounts for bistable resonance, and pro-
duces a minimum model whose solution is similar to that of the Duffing oscillator.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Gravity-driven flow of a thin film down a flat incline is one of the
basic flow configurations in hydrodynamics. This system has
attracted much attention and has been studied in detail during the
last decades. For a review see for instance the monograph by Chang
and Demekhin (2002). In most of the industrial and environmental
systems, however, the film does not flow over perfectly flat sub-
strates. Thus, it is of great importance to know how the deviations
from the perfect condition of a flat incline affect the gravity-driven
film flow.

An open issue in the literature is the description of steady flow
along a wall with smooth or abrupt topography, i.e. the equivalent
of Nusselt solution along a flat incline. The most studied variation
of this problem is for negligible inertia and the dominant feature is
the formation of separation eddies when the wall undulations are
steep enough (Pozrikidis, 1988; Zhao and Cerro, 1992; Wierschem
et al., 2003; Wierschem and Aksel, 2004b). Abrupt wall topography
(e.g. steps, edges, Aksel, 2000) produces additionally upstream cap-
illary ridges (Kalliadasis et al., 2000; Mazouchi and Homsy, 2001;
Davis and Troian, 2005). Other physical effects that have been con-
sidered – always in the small Reynolds limit – are the addition of
surfactants (Pozrikidis, 2003), thermocapillarity (Kabova et al.,
2006), three-dimensionality (Blyth and Pozrikidis, 2006; Luo and
Pozrikidis, 2007), wall flexibility (Matar et al., 2007), evaporating
films over topography in the lubrication approximation (Gaskell
ll rights reserved.

: +49 921 55 7265.
eining).
et al., 2006), flow over localized topography (Gaskell et al., 2004)
and electrical forces (Tseluiko et al., 2008a, Tseluiko et al., 2008b).

Experiments with increasing inertia (Vlachogiannis and
Bontozoglou, 2002; Wierschem and Aksel, 2004a) indicate that
the free surface of steady flow becomes progressively more dis-
torted. As the extent of distortion has been found to depend on
the height of the corrugations (Argyriadi et al., 2006), a useful the-
oretical simplification is the linearly undulated wall, with corruga-
tion height much smaller than both corrugation wavelength and
thickness of the liquid film. Numerical studies in this linear limit
(Bontozoglou and Papapolymerou, 1997; Luo and Pozrikidis,
2006) hint that, for corrugation lengths in the capillary and capil-
lary-gravity regime, the free surface shape is established through
a resonant interaction with the wall.

Recently, Wierschem et al. (2008) combined numerical and ana-
lytical approaches to carry out a detailed study of linear resonance
in arbitrarily thick films. We should note that in their and in the
present investigation the notion of resonance is used as a synonym
for an amplification of the free surface and film thickness amplitude.
The first modes of the Fourier spectrum show linear and nonlinear
resonance effects by varying the Reynolds number. Wierschem
et al. (2008) showed that resonance is stronger at dimensionless
film thickness of about one (scaled with the corrugation wavenum-
ber). For very thin films the free surface approaches the shape of the
wall and the resonance maximum flattens around the value one. For
very thick films the efficiency of transportation of the bottom per-
turbation towards the free surface gradually deteriorates. As a
result, the resonance remains sharp but declines in amplitude.
These authors also concluded that the mechanism of linear

mailto:christianheining@gmail.com
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow


x

y

α

d

a

g

λ

Fig. 1. Film with the Nusselt film thickness d flowing down an undulated bottom
profile with wavelength k, amplitude a and mean inclination angle a. The Cartesian
coordinates x and y point in mean flow direction and perpendicular to it.
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resonance involves a phase-locking of the undulated wall with cap-
illary-gravity waves travelling against the mean flow direction.

Despite the convenience of the linear approximation, most appli-
cations are expected to involve corrugations of finite height and
thus nonlinear effects will gain in significance. Wierschem and
Aksel (2004a) observed, in their experiments on film flow over sinu-
soidal substrates, the generation of higher harmonics and specu-
lated that they might be due to a nonlinear resonance.
Vlachogiannis and Bontozoglou (2002) found similar phenomena
in film flow over substrates with orthogonal corrugations. Trifonov
(1998) and Bontozoglou (2000) studied numerically film flow over
sinusoidal corrugations of finite steepness. The latter author
observed that with increasing wall amplitude and therefore increas-
ing nonlinearity of the governing equations the resonance curves
bend to the right. This bistability with different solution branches
and hysteresis is a typical phenomenon in nonlinear resonance.

The experimental and numerical observations mentioned above
show distinct features of nonlinear resonance. Yet, there is no
understanding of the mechanisms at work in viscous film flow over
a wall with corrugations of finite amplitude. In this paper, we com-
bine numerical computations of the steady, full field equations with
asymptotic analysis in order to study the qualitative features of the
nonlinear resonance. The analysis starts from integral boundary-
layer equations and proceeds with a formal small parameter expan-
sion. This approach is complementary to the direct derivation of a
nonlinear approximation to the flow based on the dominant eigen-
vectors (center-manifold theorem), that has provided important
results for film flow on a flat wall (Nguyen and Balakotaiah, 2000;
Ruyer-Quil and Manneville, 2002) and has recently been extended
to a general curved substrate (Roberts and Li, 2006).

Though the present study is limited to steady flow, we note the
related stability problem. It is known that, beyond a critical Rey-
nolds number value, film flow becomes convectively unstable to
travelling disturbances. The available analytical (Wierschem and
Aksel, 2003; Davalos-Orozco, 2007) and numerical (Trifonov,
2007) studies predict that periodic corrugations have a stabilizing
effect (i.e. postpone transition to higher Reynolds numbers), and
that the stabilizing effect increases with corrugation steepness.
These predictions have been experimentally confirmed over a lim-
ited parameter range (Wierschem et al., 2005; Argyriadi et al.,
2006). We argue, however, that the results of the present steady
calculation are important even when corresponding to unstable
films. This happens because (i) the steady flow is a prerequisite
for stability analysis, (ii) the instability is convective and the steady
flow always re-establishes between successive disturbances, and
(iii) there is experimental evidence (Argyriadi et al., 2006) that
the resonant steady deformation is a dominant characteristic of
the unstable free surface and is only slightly modulated in ampli-
tude and phase during the passage of travelling waves.

The outline of the paper is as follows: first, we describe the
problem setup in Section 2. In Section 3, we present numerical
findings on the generation of higher harmonics and bistable reso-
nance of different harmonics. In Section 4, we derive an analytic
equation to study nonlinear resonance. Although the range of
validity of this approach is limited to thin films, it allows for a qual-
itative understanding of the observed nonlinear features, such as
the generation of different maxima for higher harmonics as well
as a minimal model for the bistability. The results are discussed
and summarized in Section 5.
2. Problem setup

We study the steady, two-dimensional film flow of an incom-
pressible and Newtonian liquid down a sinusoidal bottom
y = b(x) � acos(2p x/k), with wavelength k and amplitude a. Axis
x is the Cartesian coordinate in main flow direction, which is
inclined at an angle a with respect to the horizontal, as shown in
Fig. 1. Axis y is the coordinate perpendicular to the flow direction
and the location of the free surface is denoted by y = h(x). The
liquid has density, kinematic viscosity and surface tension q, m
and r, respectively, and the volumetric flow rate per unit cross-
section _q.

The characteristic scales are the film thickness, d, and the mean
velocity, hui, of steady flow along a flat incline, which are given by
the Nusselt solution

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m _q

g sin a
3

s
; hui ¼

_q
d
¼ gd2 sina

3m
ð1Þ

with g the acceleration of gravity. Using this scaling and denoting
dimensionless quantities by capital letters, we arrive at the follow-
ing form of the continuity and Navier–Stokes equations:

r � U ¼ 0; ð2Þ

ðU � rÞU ¼ �rP þ 1
Re
r2Uþ 3

Re
g: ð3Þ

Here, U = (U,V) is the dimensionless velocity vector, with U and V its
components in the x- and y-directions, respectively, P is the dimen-
sionless pressure scaled by qhui2 and g is the dimensionless gravity
vector. We have also introduced the Reynolds number, defined as
Re ¼ _q=m ¼ huid=m. With the scaling above, the dimensionless bot-
tom profile reads Y = B(X) = ncos(dX) where we introduced the
dimensionless wall amplitude n = a/d and the dimensionless film
thickness d = 2pd/k. We remark that d may also be interpreted as
the dimensionless wavenumber of the wall undulation. X, Y denote
the dimensionless coordinates.

The field equations are complemented with the boundary con-
ditions. These are the no-slip and no-penetration condition at the
dimensionless bottom Y = B(X)

U ¼ V ¼ 0; ð4Þ

the kinematic boundary condition at the dimensionless free surface
Y = H(X)

UHx � V ¼ 0; ð5Þ

and the dynamic boundary condition at the free surface

n � T ¼ 3Bo�1

d2Re

 !
Kn: ð6Þ

Here, we denote by n the unit vector normal to the free surface, by K
the free surface curvature K ¼ HXX=ð1þ H2

XÞ
3=2, by T the stress ten-

sor T = �(P � Pair)I + (1/Re)[rU + (rU)T] with I the identity matrix
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and Pair the pressure of the air above. Subscripts denote differenti-
ation with the respective coordinate. We have also introduced the
inverse Bond number Bo�1 = (2plCa)2/(k2sina) with capillary length
lCa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqgÞ

p
. Finally, the inlet and outlet boundary conditions are

replaced by the assumption that the flow has the same periodicity
as the wall, i.e. it is fully developed.
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Fig. 2. Numerical calculation of the amplitude of (a) the first and (b) the second
harmonic of the free surface, for dimensionless wall amplitude n = 0.143 (�) and
n = 0.357 (�). The line corresponds to the linear prediction. The other parameter
values are: a = 13�, Bo�1 = 12.75, d = 0.35.
3. Numerical analysis

The goal of the numerics in the present section is to study funda-
mental nonlinear interactions between the wall and the free surface
and to investigate thoroughly the role of the main flow parameters,
i.e. film thickness, Reynolds number and inverse Bond number on
the free surface shape. The magnitude of the wavy corrugations is
expressed by the dimensionless wall amplitude n. Linear resonance,
corresponds to a wavy wall with amplitude much smaller than film
thickness (Wierschem et al., 2008). In this case, the governing equa-
tions can be linearized around the flat bottom solution. We use the
shape of the free surface as a diagnostic of the degree of nonlinear-
ity. More specifically, we take the Fourier spectrum of H(X) and
examine the magnitude of the first few harmonics. Thus, the
emerging nonlinear effects are systematically followed and direct
comparison with asymptotic results is made possible.

3.1. Computational procedure

In the present application, we exploit the assumption of period-
icity and define the computational domain over only one wall
wavelength. The mesh consists of equi-distantly distributed nodes
in both the X- and Y-directions. While the X-location of the nodes is
known a priori the Y-location evolves during the solution proce-
dure according to the relation Y ¼ bY ½HðXÞ � BðXÞ� þ BðXÞ, where
the transformation variable bY is equi-distantly distributed in the
interval [0,1].

The imposition of periodic boundary conditions creates an addi-
tional degree of freedom, which is removed by fixing either the
flow rate or the mean liquid level. We opt for the former, and
enforce at the inlet the condition

_Q ¼
Z H

B
U dY ¼ 1: ð7Þ

We also select arbitrarily the pressure at an inlet location in the li-
quid, either at the bottom or at the free surface (pressure datum),
and treat the air pressure as an additional unknown. This procedure
facilitates convergence and is permissible because the air pressure
has no dynamical significance and only adds a constant to the actual
pressure distribution inside the liquid film. For another example of
this fairly standard procedure, see Salamon et al. (1994).

The set of equations and boundary conditions (2)–(7) is solved
by a Galerkin finite-element method. The primary unknowns of
the flow, which are the velocities U and V, the pressure P and the
unknown location of the free surface H, are expanded in each ele-
ment, respectively, in terms of bi-quadratic, bi-linear and quadratic
basis functions. The governing equations, weighted integrally with
the basis functions, result in the continuity, momentum, and kine-
matic residuals, which are evaluated numerically using nine-point
Gaussian integration and are solved simultaneously for the
unknown nodal values by a Newton–Raphson iterative scheme. A
more detailed description of the computational scheme is provided
by Malamataris et al. (2002).

3.2. Higher harmonics

We first examine the gradual deviation of the resonance curves
from linear behaviour (Wierschem et al., 2008). Fig. 2 shows the
amplitudes of the first two free surface harmonics as functions of
the Reynolds number, for two different values of the wall ampli-
tude. All other parameters were held constant at the values
a = 13�, Bo�1 = 12.75, d = 0.35. The amplitudes of the free-surface
harmonics are normalized with the amplitude of the wavy wall
and will be denoted as the relative amplitudes in the following.
The linear prediction is plotted in Fig. 2(a) as a continuous line.
All curves show a local maximum, which corresponds to amplifica-
tion and will be further referred hereafter as the resonance effect.
We observe that the numerical results for n = 0.357 deviate some-
what from the linear solution, indicating that nonlinearities are
already significant. On the contrary, there is good agreement at
n = 0.143, and this wall amplitude is considered as practically lin-
ear. The amplitudes of the second harmonics, shown in Fig. 2(b),
are generally small, as expected for small deviations from linearity.
They both exhibit a local maximum around the resonance
Reynolds number of the fundamental harmonic, but the amplitude
of n = 0.357 remains significant at higher Reynolds numbers.

Next, the quantitative characteristics of the second harmonic of
the free surface are studied for a vertical wall of small amplitude
(n = 0.125, a = 90�), in order to examine the effects of film thickness
and inverse Bond number. Initially, the film thickness is held con-
stant at d = 1.0 and the effect of inverse Bond number is considered.
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The amplitude as a function of the Reynolds number is shown in
Fig. 3(a) and indicates that at small Bo�1 a single peak is observed.
With increasing Bo�1, a shoulder appears to the right of the main
peak and then separates completely and moves to higher Reynolds
numbers. The maximum amplitudes of the two peaks are shown in
Fig. 3(b). The primary peak first increases with Bo�1 and then sat-
urates to a roughly constant value. The secondary peak grows
slowly with Bo�1 until the saturation of the primary peak, and
therefrom increases faster. However, its amplitude is always smal-
ler than that of the primary peak.
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Fig. 3. Amplitude of the second harmonic as a function of the Reynolds number for
different inverse Bond numbers (a). Panels (b) and (c) show the amplitudes of the
local maxima and the corresponding Reynolds numbers, respectively. The other
parameter values are: a = 90�, d = 1.0, n = 0.125.
Fig. 3(c) shows the Reynolds numbers at which the second har-
monic attains the two maxima, and indicates that, with increasing
Bo�1, both peaks move to higher Re. These Reynolds numbers are
found to coincide with linear predictions of resonance from Wier-
schem et al. (2008), which are also shown in the figure. More spe-
cifically, the lower line (first peak) represents the Reynolds number
where linear amplitude becomes maximum, and the upper line
(second peak) represents the same prediction but now for a wall
with half the wavelength and consequently four times the inverse
Bond number (Bo�1 � k�2). These coincidences represent the dom-
inant modes of weakly nonlinear interaction, and will be explained
by the asymptotic analysis of the next section.

Next, the inverse Bond number is held constant and the effect of
film thickness is considered. Wierschem et al. (2008) have shown
that the dimensionless film thickness determines the maximum
linear intensity of the resonance: In thin films the linear resonance
loses in both sharpness and amplitude, whereas in thick films it
diminishes in amplitude while retaining its sharpness. The linear
predictions (Wierschem et al., 2008) of maximum amplitude and
the Reynolds values where it occurs are reproduced as lines in
Fig. 4 for a vertical wall and Bo�1 = 25 and 100. These are compared
with numerical results of the first and second harmonic of the free
surface for the weakly nonlinear wall. The maximum in first har-
monic is observed to deviate progressively from the linear predic-
tion with decreasing d, with the deviation aggravating at higher
Bo�1. The pertinent Re also deviates with decreasing d, a behaviour
that is reasonable in view of the limitation of linear analysis to
n = a/d	 1. The second harmonic has the same qualitative behav-
iour as the first but is displaced towards lower values of d. This is
also expected, given that the dimensionless film thickness corre-
sponding to the second harmonic is twice the nominal. In all cases,
the Reynolds numbers where the first and second harmonics attain
maximum values almost coincide.

The behaviour of the third harmonic demonstrates the increase
in complexity with the consideration of higher-order effects. We
present as an example in Fig. 5 the amplitude of the first three har-
monics as function of Re. The third harmonic exhibits three peaks:
one at the fundamental resonance, another one at the secondary
peak of the second harmonic, and a third one at higher Re. As
expected, its magnitude is quantitatively insignificant for such a
weakly corrugated wall.
3.3. Bistability

In this section, we study the evolution of the free surface with
increasing dimensionless wall amplitude. The main observation
relates to the gradual supercritical distortion of the resonance
peak, which is a strongly nonlinear effect that becomes quantita-
tively significant at relatively steep walls. We study again the var-
iation with Re of the first three harmonics of the free surface. As a
test case, we consider a vertical wall and the parameter values
Bo�1 = 100 and d = 1.5, which lead to relatively strong linear
resonance.

Fig. 6(a) compares the magnitude of the first harmonic of the
free surface for various values of dimensionless wall amplitude.
Whereas a weakly nonlinear wall exhibits a vertical peak similar
to that predicted by linear analysis, increasing dimensionless wall
amplitude leads to the gradual appearance of two solution
branches. The left one, starting from low Reynolds numbers
extends to a maximum Reynolds number and then ceases to exist.
The right one, starting at high Reynolds numbers, exhibits a turn-
ing-point bifurcation and meets the left branch at the peak, form-
ing a (very abrupt) second turning point. Thus, with increasing
dimensionless wall amplitude, n, the resonance peak is strongly
skewed to the right.
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Fig. 6(b) and (c) show, respectively, the second and third har-
monic for the same range of n values. It is evident that, with
increasing wall amplitude and therefore increasing nonlinearity
of the governing equations, bistability gradually becomes signifi-
cant for higher-order interactions as well. It is also noteworthy that
– unlike the first harmonic whose relative amplitude is sharply
reduced by the shape distortion of the bistability – the maximum
relative amplitudes of the second and third harmonic distinctly
increase with dimensionless wall amplitude. For example, quadru-
pling the dimensionless wall amplitude from n = 0.083 to n = 0.333
results at maximum to a doubling of the first harmonic, but to an
eightfold increase of the second harmonic. It is concluded that
the relative contribution of higher harmonics to the shape of the
free surface is magnified with increasing dimensionless wall
amplitude.

The above characteristic is brought out in Fig. 7, where free sur-
face profiles are depicted for conditions corresponding to the max-
imum of second-order resonance and various values of the
dimensionless wall amplitude. For n = 0.125, the free surface is
visually indistinguishable from a sinusoidal wave, indicating that
the second harmonic is quantitatively insignificant. However,
things change drastically with increasing dimensionless wall
amplitude and at n = 0.5 a free surface profile strongly influenced
by higher harmonics is predicted. Such free surface manifestation
of higher harmonics has indeed been observed in experiments
(Wierschem and Aksel, 2004a).

4. Asymptotic analysis

The objective of the present section is to understand the phys-
ical mechanisms of the phenomena. We perform an asymptotic
analysis and compare the results with the numerics. In thin-film
flows the velocity is often well described by a self-similar parabolic
velocity profile. Except for steep fronts, this also holds in the pres-
ence of surface waves on a flat substrate (Alekseenko et al., 1985;
Malamataris et al., 2002) as well as in thin films flowing down
wavy planes if the Reynolds number is of order one (Wierschem
et al., 2005; Wierschem et al., 2002). Thus we assume a self-similar
parabolic velocity profile and use the von Kármán–Pohlhausen
integral boundary-layer method to derive an ordinary differential
equation for the film thickness. This approach has successfully
been applied in various regimes. Shkadov (1967) was the first
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who derived an integral boundary-layer equation for the flow over
a flat substrate. Prokopiou et al. (1991) developed a higher-order
theory to investigate surface waves and Uecker (2004) studied
nonlinear stability of the integral boundary-layer equations.
Trifonov (1998) adapted Shkadov’s approach to a periodic bottom
profile and Valluri et al. (2005) applied this theory to flow over
structured packings.

4.1. Derivation of the resonance equation

We use the following scaling in order to derive the thin-film
equation:
x ¼ k
2p

X; y ¼ dY ; f ¼ dF;

h ¼ dH; b ¼ aB; p ¼ qhui2P;

u ¼ huiU; m ¼ 2pd
k
huiV :

ð8Þ

With respect to the problem setup in Section 2, we note that an
additional variable, the local film thickness f(x) = h(x) � b(x), is
introduced and that variables x, b and v are now scaled differently.
However, the same dimensionless symbols are retained for simplic-
ity in notation. With the above scaling, the Navier–Stokes equations
read in dimensionless form

dRe U
oU
oX
þ V

oU
oY

� �
¼ �dRe

oP
oX
þ 3þ d2 o2U

oX2 þ
o2U

oY2 ð9Þ

and

d2Re U
oV
oX
þ V

oV
oY

� �
¼ �Re

oP
oY
� 3 cot aþ d3 o2V

oX2 þ d
o2V
oY

2

; ð10Þ

while the continuity equation takes the form

oU
oX
þ oV

oY
¼ 0: ð11Þ

In integral form mass conservation yields the dimensionless flow
rate

_Q ¼
Z H

nB
U dY: ð12Þ

The boundary conditions at the bottom (Y = nB � ncosX) are the no-
slip and no-penetration condition:

U ¼ V ¼ 0: ð13Þ

At the free surface Y = nB + F � H where F is the dimensionless film
thickness the kinematic boundary condition reads

U
oH
oX
� V ¼ 0: ð14Þ

Neglecting the viscosity of air, we obtain for the dynamic boundary
condition normal to the free surface
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ReðP � PairÞ þ 3Bo�1
o2H
oX2

1þ d2 oH
oX

� �2
h i3=2 ¼ 2d

oV
oY
� d

oH
oX

d2 oV
oX
þ oU

oY

� �
:

ð15Þ

The dynamic boundary condition tangential to the free surface
reads

1� d2 oH
oX

� �2
( )

d2 oV
oX
þ oU

oY

� �
þ 4d2 oH

oX
oV
oY
¼ 0: ð16Þ

We remark that Re and Bo�1 are defined as introduced in Section 2.
Since we focus here on thin films, we assume that d2 is sufficiently
smaller than one to serve as a perturbation parameter. Here, the
other geometric parameter, n, is treated as a finite fixed value of or-
der one. We expand all quantities in d2	 1 and assume that dRe,
dcota and dBo�1 are of order one. This allows us to describe fluids
with moderate Reynolds and inverse Bond number. Thus, inertia
and capillarity occur in the leading order equations. We note that
we skip the subscripts of the expansion and from now on all vari-
ables denote the leading order in d2. With d2	 1 (10) reduces to
the hydrostatic balance equation and can be integrated using the
dynamic boundary condition (15). Eliminating the pressure from
(9) we then arrive at

dRe U
oU
oX
þ V

oU
oY

� �
¼ 3dBo�1 o3H

oX3 � 3d cota
oH
oX
þ 3þ o2U

oY2 : ð17Þ

Eq. (17) is complemented by the dynamic boundary condition tan-
gential to the free surface

oU
oY
¼ 0; ð18Þ

and the kinematic boundary condition at the free surface

U
oH
oX
¼ V ; ð19Þ

together with the no-slip and no-penetration condition at the
bottom:

U ¼ V ¼ 0; Y ¼ nBðXÞ: ð20Þ

Using the von Kármán–Pohlhausen integral boundary-layer
method (von Kármán, 1921; Pohlhausen, 1921; Spurk and Aksel,
2007), we obtain a single equation for the resonance capillary-
gravity waves with the bottom corrugation. Integrating the conti-
nuity equation (11) over the film thickness and taking into account
(12)–(14) yields

o _Q
oX
¼ 0: ð21Þ

Integrating now the momentum equation in X-direction (17) from
the bottom to the free surface results in

dRe
o

oX

Z H

nB
U2 dY

� �
¼ 3dBo�1 o3H

oX3 F � 3d cot a
oH
oX

F þ 3F � oU
oY

				
Y¼nB

;

ð22Þ

where we used integration by parts in the Reynolds term, the no-
slip condition at the bottom (13), and the kinematic boundary con-
dition at the free surface (14), and further eliminated oV/oY by
applying the continuity equation (11). Together with (21), this
equation forms a set of two equations.

A specific profile must now be imposed in the theory. According
to the discussion in the beginning of the present section, we
assume here a self-similar parabolic velocity profile (von Kármán,
1921; Pohlhausen, 1921). Taking into account (12) and (21) the
velocity component in X-direction reads
U ¼ 3
F

Y � nB
F
� ðY � nBÞ2

2F2

 !
: ð23Þ

From (22) we obtain with the velocity profile (23) at leading
order in d2

0 ¼ 6
5

dReFX � 3F3ðd cot aFX � dBo�1FXXXÞ þ 3ðF3 � 1Þ

þ 3ðd cot aþ dBo�1ÞnF3 sin X: ð24Þ

The physical origins of the terms of this nonlinear ordinary differen-
tial equation for the film thickness are, in that order, inertia, hydro-
static and capillary pressure, gravity-driven forcing, wall-shear
stress. The periodic inhomogeneity is due to the change of the
hydrostatic and capillary pressures, respectively, that are caused
by the undulated bottom.

In what follows, we expand the film thickness F in a power ser-
ies of the parameter n	 1:

F ¼ F0 þ nF1ðXÞ þ n2F2ðXÞ þ n3F3ðXÞ þ Oðn4Þ: ð25Þ

We note that expanding first the field equations in d2	 1 and after-
wards expanding the film thickness in n	 1 is a double expansion
where the internal orders of magnitudes between the perturbation
parameters have to be considered. Keeping n terms in the expansion
(25) asymptotic consistency and the physical meaning of the solu-
tion is maintained provided that nn�1
 d2. In the figures presented
in this and in the following sections, we will not always strictly hold
this restriction. Asymptotic theories often deliver good results for
parameters exceeding the validity domain. A justification will be gi-
ven by a comparison to the numerical solution.

With this expansion, the nonlinear equation (24) degenerates
into a hierarchy of linear ordinary differential equations. The
expansion yields for the leading order term F0 = 1, i.e. the steady
film thickness for a flat incline.

At first order we obtain from (24)

0 ¼ d cot aF1X � dBo�1F1XXX �
2
5

dReF1X � 3F1 � ðcotaþ Bo�1Þ sin X:

ð26Þ

The film flow has no intrinsic oscillation frequency and the homo-
geneous solution is an exponential function in space. Demanding
that the homogeneous solution remains finite for large distances
and periodic for a periodic bottom profile yields a zero homoge-
neous solution. According to the inhomogeneities, we solve (26)
with the following ansatz:

F1 ¼ C1 cos X þ S1 sin X; ð27Þ

yielding the constants

S1 ¼
�3ðcot aþ Bo�1Þ

d cot aþ dBo�1 � 2
5 dRe


 �2
þ 9

;

C1 ¼ �
d cotaþ dBo�1 � 2

5 dRe

 �

ðcotaþ Bo�1Þ

d cot aþ dBo�1 � 2
5 dRe


 �2
þ 9

:

ð28Þ

We note that (28) has the same form as the fix point for the
weighted-residual model in Oron and Heining (2008). At second-
order (24) yields together with (25)

0 ¼ d cot aF2X � dBo�1F2XXX �
2
5

F2XdRe� 3F2

� 3F2
1 � 3F1ðdBo�1F1XXX � d cot aF1XÞ

� 3ðdBo�1 þ d cotaÞF1 sin X: ð29Þ

While the homogeneous part in the upper line of Eq. (29) remains
identical to that for the linear resonance, the inhomogeneous part
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is due to nonlinearities in the film thickness (second line) and due
to a coupling between bottom contour and film thickness (third
line). Inserting the ansatz for the first-order solution yields together
with (26)

0 ¼ d cot aF2X � dBo�1F2XXX �
2
5

F2XdRe� 3F2 þ 3M2

þM sin 2X þ N cos 2X; ð30Þ

with

M2 ¼ S2
1 þ C2

1;

M ¼ 3
5
ðS2

1 � C2
1ÞdReþ 6S1C1;

N ¼ 6
5

S1C1dReþ 3C2
1 � 3S2

1:

ð31Þ

Thus at second order, the inhomogeneities, which come from the
coupling of the free surface with the bottom contour and from non-
linearities of the free surface profile, yield a modification of the
mean film thickness, i.e. the leading order solution, and second har-
monics of the bottom contour. According to the inhomogeneities in
(30) we choose the following ansatz:

F2 ¼ M2 þ C2 cos 2X þ S2 sin 2X; ð32Þ

where C2 and S2 are constants to be determined. Inserting of (32)
into (30) yields

S2 ¼
KM � LN

L2 þ K2 ; C2 ¼
KN þ LM

L2 þ K2 ; ð33Þ

with

K ¼ 3
2
; L ¼ d cotaþ 4dBo�1 � 2

5
dRe: ð34Þ

At third order, the inhomogeneities result in a modification of the
fundamental mode and in a third harmonic of the bottom contour.
Accordingly the inhomogeneities are solved using the following
ansatz:

F3 ¼ C31 cos X þ S31 sin X þ C33 cos 3X þ S33 sin 3X: ð35Þ

The constants C31, S31, C33, and S33 take a similar form as for the first
and second-order solutions, i.e.

C31 ¼
KN31 þ L31M31

K2 þ L2
31

; S31 ¼
KM31 � L31N31

K2 þ L2
31

;

C33 ¼
KN33 þ L33M33

K2 þ L2
33

; S33 ¼
KM33 � L33N33

K2 þ L2
33

;

ð36Þ

with

K ¼ 3
2
; L31 ¼

1
2

d cot aþ dBo�1 � 2
5

dRe
� �

;

L33 ¼
3
2

d cot aþ 9dBo�1 � 2
5

dRe
� �

: ð37Þ

The rest of the contributions are given in Appendix A.

4.2. Linear resonance

Wierschem et al. (2008) studied linear resonance for rather
thick films. We consider now linear resonance effects in the inte-
gral boundary-layer framework. In the previous section, we
expanded the film thickness in powers of the parameter n, and
obtained the solution for a steady film up to third order in n. Eq.
(26) shows that, to this order, the inhomogeneities are of the fun-
damental wave number of the bottom undulation. Due to the inho-
mogeneous terms, the film thickness varies with the wavelength of
the bottom contour. The solution is a linear combination of sinX
and cosX with coefficients S1 and C1 given by (28). S1 is negative
in the entire range of Reynolds numbers and tends to zero at large
Reynolds numbers. C1 is negative for rather small Reynolds num-
bers. It changes sign at Re = 2.5(cota + Bo�1) and tends to zero for
large Reynolds numbers. The relative amplitude of the film thick-

ness reads
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ C2
1

q
and resonance takes place where the denom-

inator in (28) is minimal at

Re1 ¼
5
2
ðcot aþ Bo�1Þ: ð38Þ

At Re1 the amplitude of the film thickness is maximized whereas the
resonant Reynolds number for the maximum free-surface ampli-
tude is different because one has to take into account the elevation
and the phase shift due to the periodic wall. Inserting the defini-
tions of the Reynolds number, the inverse Bond number and the
film-thickness parameter d, and using the Nusselt solution for the
mean flow velocity (1) and (38) yields

hui2 ¼ 5
6

u2
G þ u2

Ca

� �2ph
k

; ð39Þ

where uG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðk=2pÞ cosa

p
is the phase velocity of gravity waves

and uCa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p=kÞðr=qÞ

p
is the phase velocity of capillary waves

with the wavelength of the bottom contour in infinitely thick liquid
layers. We remark that expanding tanh(2ph/k) in a Taylor series re-
sults in tanh(2ph/k) = 2ph/k + O((2ph/k)3) and thus we recover the
resonance with capillary-gravity waves in liquids of finite thickness
at first order in the film-thickness parameter.

At Re = Re1, we have

C1 ¼ 0; S1 ¼ �
1
3
ðcot aþ Bo�1Þ; ð40Þ

and thus

F1 ¼ �
1
3
ðcot aþ Bo�1Þ sin X: ð41Þ

Eq. (41) shows that at resonance the changes in the gravity forcing
and in capillary pressure yield a phase shift of p/2 with respect to
the bottom B = cosX. It is noted that the effect of hydrostatic and
capillary pressures is expressed by a unique combination, the pres-
sure number Phc = cota + Bo�1. With dPhc of order one, as in the case
of Fig. 8(a), the resonance is mainly governed by S1. Thus the ampli-
tude increases with the pressure number. The figure also shows the
phase shift of the film-thickness with respect to the bottom con-
tour, given by arctan(�S1/C1), where the dotted curve corresponds
to the maximum film thickness.

The studies of the preceding sections as well as those cited in
the literature have focused on the amplitude of the free surface
and not on the film thickness (Bontozoglou and Papapolymerou,
1997; Bontozoglou, 2000; Vlachogiannis and Bontozoglou, 2002;
Wierschem and Aksel, 2004a). With the dimensionless bottom
contour B = cosX, the position of the free surface up to first order
in the Cartesian coordinates is at

Y ¼ nBþ F0 þ nF1 ¼ 1þ na1 cosðX þ Du1Þ; ð42Þ

where we introduced the free-surface amplitude

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ C1Þ2 þ S2

1

q
ð43Þ

and the phase shift between the free surface and the bottom
contour

Du1 ¼ arctan
�S1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
1 þ ð1þ C1Þ2

q : ð44Þ

It shows that negative C1 yields a flattening of the free surface while
S1 always produces an amplitude increase. The maximum free-sur-
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face amplitude also increases with the pressure number and is
found to be at

Re ¼ 5
2

Phc �
Phc

2d

� �
þ 5

4d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

hc þ 36
q

: ð45Þ

For the parameter range considered here, i.e. dPhc being of order one
and small d2, it is larger than that for the film thickness given by (38).

Fig. 8(b) compares the amplitude of the free surface a1 to that of
the film thickness variation F1 as a function of the Reynolds num-
ber. It shows that the maximum free-surface amplitude is obtained
at higher Reynolds numbers than for the maximum film thickness.
This is because the decreasing film-thickness amplitude is over-
compensated by a decrease in the phase shift between the film
thickness and the bottom contour. As shown in Fig. 8(a) and (c),
the phase shift between the film thickness at maximum free-sur-
face amplitude and the bottom contour has diminished to about
p/4.
4.3. Nonlinear resonance

The nonlinearity in (24) results in higher harmonic inhomoge-
neities at higher order in the parameter n. In the power expansion,
these nonlinearities enter by the coupling of lower-order solutions
for the film thickness with each other and with the bottom con-
tour. The second-order solution yields a modification of the mean
film thickness and second harmonics of the bottom contour. The
mean elevation at second-order M2 reaches rather large values at
low Reynolds numbers and tends to zero at high Reynolds num-
bers. Eq. (33) shows that the harmonic contribution has the same
form as the first-order solution, with L being the resonant term.

From (34) results that the amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

2 þ C2
2

q
of F2 is maximized

where L is zero and thus resonance for F2 takes place at

Re2 ¼
5
2
ðcot aþ 4Bo�1Þ: ð46Þ

Thus, in general the resonance at second order takes place at higher
Reynolds numbers than the first-order resonance and coincides
with it if surface tension is negligible. Inserting the definitions of
the parameters as before for the linear resonance, shows that this
corresponds to a resonance with capillary-gravity waves of half
the wavelength of the bottom contour:

hui2 ¼ 5
6

k=2
2p

g cos aþ 2p
k=2

r
q

� �
2ph
k=2

: ð47Þ

The resonance, however, takes place only for sufficiently strong
M and N terms in (33), i.e. sufficiently strong linear resonance and
the nonlinear coupling. Besides this resonance with capillary-grav-
ity waves at half the wavelength of the bottom contour, the second
harmonic has a local maximum in the vicinity of the Reynolds num-
ber for linear film-thickness resonance. This is due to the strong
nonlinear coupling at linear resonance as is apparent from (31).
The amplitude of the second-order film thickness and its phase shift

are a2 ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

2 þ C2
2

q
and Du2 = arctan(�S2/C2), respectively.

Fig. 9(a) shows the influence of the second-order solution on the
surface profiles at different Reynolds numbers. For the same
parameters, the relative amplitudes of the surface contour at first
and second order as a function of the Reynolds number are
depicted in Fig. 9(b). It shows that the second-order solution has
two local maxima as found in the numerical calculations. The
one at higher Reynolds number is due to the higher harmonic res-
onance (46) and the maximum at lower Reynolds number is due to
the coupling to the first-order film-thickness, as the periodic inho-
mogeneities in (30), M and N, are functions of the first-order solu-
tions S1 and C1.

Eq. (46) shows that the resonance at second order moves to
higher Reynolds numbers if the inverse Bond number increases.
A study of the effect of surface tension on the resonance at second
order is shown in Fig. 10. It depicts the free-surface amplitude as a
function of the Reynolds number for different inverse Bond num-
bers. With surface tension being small the second-order solution
has a single peak where both effects, the resonance given by (46)
and the strong coupling to the first-order solution overlap. The
peak augments with increasing inverse Bond number and moves
to higher Reynolds numbers. Increasing the inverse Bond number
further, the peak splits into two and both of them increase in size
and occur at still higher Reynolds number. Thus we recover the
same process as observed numerically, see Fig. 3(a).
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The solution at third order in the dimensionless wall amplitude
yields a correction of the fundamental mode, obtained at first
order, and a third harmonic of the bottom contour, as is apparent
from (35). Fig. 11 shows the free-surface amplitude of the different
contributions as a function of the Reynolds number. As in the case
of the second-order solution, which yields the second harmonic,
the solution for the third harmonic has additional peaks. The peak
at highest Reynolds number is due to a resonance at
Re3 ¼
5
2
ðcot aþ 9Bo�1Þ; ð48Þ

i.e. a resonance with capillary-gravity waves of a third of the wave-
length of the bottom contour.

Peaks at lower Reynolds number are due to the coupling to the
first and to the second-order solution and thus take place close to
Reynolds numbers where these ones have local maxima. The con-
tribution of the third-order solution to the fundamental wave
number has only two maxima. This is apparently due to the fact
that the resonance coincides with that of the first-order solution,
i.e. it is at Re1 = 5/2(cota + Bo�1). Thus it overlaps with the strong
coupling to the first and second-order solutions. The second peak
for the fundamental wave number is due to the coupling to the sec-
ond-order solution.

4.4. Bistability

The analysis shows that the third-order solution in the dimen-
sionless wall amplitude yields a correction to the fundamental
wave-number result at first order. To see whether our reduced sys-
tem still allows for bistable resonance we solved (24) numerically.
Together with periodic boundary conditions, (24) is a third-order
boundary-value problem which we solved using a finite-difference
algorithm. As shown in Fig. 12, Eq. (24) shows indeed bistable res-
onance. Next we derive a generic nonlinear equation to study the
main qualitative features of the bistability. The idea is to extend
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the linear equation (26) with higher-order nonlinearities which
have been skipped in the perturbation expansion. Therefore, we
expand the film thickness into F = 1 + nf1, where f1 is written as a
Fourier series f1 = c1cosX + s1sinX and consider only the fundamen-
tal wave number. Disregarding all higher harmonics results in

0 ¼ ðd cot af1X � dBo�1f1XXXÞð1þ 3n2f 2
1 Þ �

2
5

f1XdRe

� f1ð3þ n2f 2
1 Þ � ð1þ 3n2f 2

1 ÞðdBo�1 þ d cot aÞ sin X: ð49Þ
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Fig. 13. Relative amplitude of the first and second harmonic for film-thickness d = 0.2 (a
values are: a = 13�, Bo�1 = 12.75.
This is the nonlinear extension of the first-order equation for linear
resonance (26). Three nonlinear terms arise: The first one is the
hydrostatic and capillary-pressure term, the second one comes from
the forcing due to the bottom undulation, and the third one takes
into account higher-order corrections of the inhomogeneities.
Parameter studies did not show any qualitative effect of the last
two nonlinearities on the bistability. Here, we focus on the generic
equation and thus we may neglect them in the following, arriving
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), 0.1 (b) and 0.05 (c) for fixed bottom geometry 2pa/k = 0.05. The other parameter
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0 ¼ ðd cot af1X � dBo�1f1XXXÞð1þ 3n2f 2
1 Þ

� 2
5

f1XdRe� 3f 1 � ðdBo�1 þ d cot aÞ sin X: ð50Þ

Note that the hydrostatic and capillary pressure term has nonlinear
contributions while the counteracting inertia term remains linear.
This equation shows bistable resonance.

Although (50) is not an oscillator equation, it has the same type
of solution as the driven nonlinear Duffing oscillator (Jordan and
Smith, 1987), defined by xtt + 2bxt + x2x + ex2x3 = fcos-t, where
b, f, x, and - are the damping constant, amplitude of the driving
force, angular frequency of the oscillator and angular driving fre-
quency, respectively. With the ansatz x = Acos(-t �U), the fre-
quency response equation reads:

Aðx2 �-2Þ þ e
3
4
x2A3

� �2

þ ð2b-AÞ2 ¼ f 2; ð51Þ

for the amplitude and

tan U ¼ 2b- x2 �-2 þ e
3
4
x2A2

� �
;

�
ð52Þ

for the phase lag. With the ansatz f1 = a1 cos(X � Du1), the solution
of (50) takes the same form as (51) and (52) identifying

x2 ¼ 1
2

d cotaþ 1
2

dBo�1; -2 ¼ 1
5

dRe; 2b- ¼ 3
2
: ð53Þ

If the nonlinearity is present, the solution of (50) corresponds to
that of a driven Duffing oscillator once substituting

e ¼ n2: ð54Þ
5. Discussion and conclusions

We have studied nonlinear resonance in viscous gravity-driven
films flowing over undulated substrates, numerically and analyti-
cally. The numerics have documented that, with increasing dimen-
sionless wall amplitude, higher harmonics are generated on the
free surface and then the resonance becomes bistable.

The asymptotic analysis has provided a qualitative under-
standing of these phenomena. In particular, it has revealed
that higher harmonics are generated by the nonlinear coupling
of the wall with lower-order harmonics of the free surface.
The asymptotic analysis has also accounted for bistable reso-
nance in flows over steep bottom undulations. The solution
of a minimum model retaining the essential nonlinearities
responsible for bistabilty is similar to that of the Duffing
oscillator.

To investigate systematically the range of validity of the asymp-
totics, we compare the analytical results with numerics of the full
field equations and the linear theory in Wierschem et al. (2008) for
various values of dimensionless film thickness. The results are
shown in Fig. 13, and refer to a = 13�, Bo�1 = 12.75. It has to be
noted that we exceeded the validity domain for the linear predic-
tion of Wierschem et al. (2008) and the present asymptotics in
Fig. 13(b) and (c). Although n = O(1), we obtain satisfactory qualita-
tive agreement with the numerical results. We observe that the
asymptotic prediction of the first harmonic is acceptable even for
the thicker film d = 0.2, and improves uniformly with decreasing
d. On the contrary, the prediction of the second harmonic is quan-
titatively correct only in a range of low Reynolds numbers, whose
width increases with decreasing d. The deviation at high Re is sig-
nificant and in particular overestimates the second-order
resonance.

The discrepancy at second order is again explained by consider-
ing that the actual film thickness for the second harmonic is twice
the nominal, and, consequently, the actual inverse Bond number
for the second-order resonance is four times the nominal. We con-
clude that asymptotic analysis reveals correctly the dominant non-
linear mechanisms and provides quantitatively satisfactory first-
order estimates for thin films. However, its accuracy deteriorates
fast at higher harmonics.
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Appendix A. Third-order solution

The inhomogeneities at third order in n (Eq. (36)) are:

M31 ¼
1
6

�18
5

M2C1 �
9
5

MS1 �
9
5

NC1 þ
9
5

S2
1C1 þ

9
5

C3
1

� �
dReþ 36M2S1 �

45
2

S1C2
1 �

45
2

S3
1 � 18NS1 þ 18MC1

� �
;

N31 ¼
1
6

18
5

M2S1 �
9
5

NS1 þ
9
5

MC1 �
9
5

S3
1 �

9
5

C2
1S1

� �
dRe� 45

2
C3

1 �
45
2

S2
1 þ 18NC1 þ 36M2C1 þ 18MS1

� �
;

M33 ¼
1
6

27
5
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27
5

NC1 �
27
5

S2
1C1 þ

9
5

C3
1

� �
dReþ 15

2
S3

1 �
45
2

S1C2
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� �
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N33 ¼
1
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27
5
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27
5
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5
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1 �

27
5
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1

� �
dRe� 15

2
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1 þ
45
2

S2
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